學(xué)術(shù)活動
歡迎關(guān)注華北電力大學(xué)!
歡迎關(guān)注華北電力大學(xué)!
【講座題目】高效可靠的智能電網(wǎng)實(shí)時監(jiān)測與模型校正
【講座時間】2019年6月26日(星期三)14:30
【講座地點(diǎn)】保定校區(qū)教一樓217
【主 講 人】林予彰 美國麻省大學(xué)羅維爾分校電氣與計算機(jī)工程系助理教授
【主講人簡介】
林予彰,獲得清華學(xué)士和碩士學(xué)位以及美國東北大學(xué)博士學(xué)位,現(xiàn)任美國麻省大學(xué)羅維爾分校電氣與計算機(jī)工程系助理教授。他目前是期刊CSEE Journal of Power and Energy Systems的編輯,同時是10余個其他國際著名學(xué)術(shù)期刊的審稿人。他發(fā)表了30余篇SCI/EI論文。他的研究領(lǐng)域包括:智能電網(wǎng)建模、監(jiān)測、數(shù)據(jù)分析和信息物理安全。他開發(fā)的用于校正和監(jiān)測參數(shù)和量測誤差的算法已經(jīng)被應(yīng)用于ISO New England電力系統(tǒng).
【內(nèi)容簡介】
The talk addresses several key problems for reliable and efficient modeling and monitoring of smart grids. For model calibration, a new framework for identification and correction of model parameter errors is presented. The Largest Normalized Lagrange Multiplier (LNLM) test is introduced, and approaches for enhancing the reliability and computational efficiency of model error identification are presented. Real-world case studies on the ISO New England system are demonstrated. For system monitoring, a unified robust state estimation approach against measurement and parameter errors is introduced. A fast and parallel implementation of bad data processing methods is also presented. Finally, the cyber-security issues in the modeling of smart grids are discussed. A security vulnerability regarding model databases which may affect the operation of electricity markets is identified, and possible countermeasures are discussed.